A characteristic map for the symmetric space of symplectic forms over a finite field

Introduction

There is an isomorphism between the class functions on the symmetric groups and symmetric functions. This has been extended to $\operatorname{GL}_n(\mathbf{F}_q)$ and the Gelfand pair S_{2n}/B_n . We develop an analogous theory for $\operatorname{GL}_{2n}(\mathbf{F}_q) / \operatorname{Sp}_{2n}(\mathbf{F}_q)$ and use it to study the Schur expansion of Macdonald polynomials.

Gelfand pairs

A **Gelfand pair** is a pair $H \subseteq G$ of groups such that convolution on bi-invariant functions $\mathbb{C}[H \setminus G/H]$ is commutative. The theory of Gelfand pairs parallels that of groups:

- *H*-**bi-invariant functions** correspond to class functions.
- Double cosets correspond to conjugacy classes.
- Spherical functions correspond to irreducible characters.

The symmetric space $\operatorname{GL}_{2n}(\mathbf{F}_q)/\operatorname{Sp}_{2n}(\mathbf{F}_q)$

The symplectic group $H = \operatorname{Sp}_{2n}(\mathbf{F}_q)$ sitting inside $G = \operatorname{GL}_{2n}(\mathbf{F}_q)$ is the set of fixed points of an automorphism ι , and form a Gelfand pair. Its theory parallels that of $GL_n(\mathbf{F}_q)$:

• Double cosets $Hg_{\mu}H$ are indexed by partition-valued functions $\mu: \{\text{irreducible polynomials}/\mathbf{F}_q\} \rightarrow \mathcal{P}_{\cdot}$

Example: Let n = 2, q = 2. The conjugacy classes of $GL_2(\mathbf{F}_q)$ are labeled by the functions $\mu_1(x-1) = (11)$, $\mu_2(x-1) = (2)$ and $\mu_3(x^2 + 1)$ x+1) = (1) (all other polynomials map to \emptyset). These correspond to rational canonical forms

$$J_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad J_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad J_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

The corresponding double cosets have representatives

$$g_{\mu_i} = \begin{pmatrix} J_i & 0\\ 0 & I \end{pmatrix} \qquad i = 1, 2, 3.$$

• Spherical functions ϕ_{λ} are indexed by partition-valued functions $\lambda : \{ \text{cuspidal representations} \} \rightarrow \mathcal{P}.$

Let P be a rational ι -stable parabolic subgroup with rational ι -stable Levi factor L and unipotent radical U. Define the following two operations on bi-invariant functions:

Bi-invariant parabolic induction:

 $\operatorname{Ind}_{L\subset P}^{G/H}(f)(x) = |H|$

Bi-invariant parabolic restriction: $\operatorname{Res}_{L \subset P}^{G/H}(f)(x)$

They satisfy the following properties:

- H.
- **Transitive:** $\operatorname{Ind}_{M \subset Q}^{G/H} = \operatorname{Ind}_{L \subset P}^{G/H} \circ \operatorname{Ind}_{M \subset Q \cap L}^{L/H \cap L}$ and similarly for Res.
- Adjoint: $\langle f, \operatorname{Ind}_{L \subset P}^{G/H} g \rangle = |H|^2 |H \cap P|^{-2} \langle \operatorname{Res}_{L \subset P}^{G/H} f, g \rangle$.

Induction gives a way to multiply a class function on $GL_m(\mathbf{F}_q)$ and a bi-invariant function on $\operatorname{GL}_{2n}(\mathbf{F}_q)$, using Levi and parabolic subgroups $L \subseteq P \subseteq \operatorname{GL}_{2n+2m}(\mathbf{F}_q)$

The characteristic map

The characteristic map is a function

 $\operatorname{ch}: \bigoplus \mathbf{C}[\operatorname{Sp}_{2n}(\mathbf{F}_q) \setminus \operatorname{GL}_{2n}]$

where Λ is the ring of symmetric functions, defined by ${}_{f}^{-2n(\mu(f))}P_{\mu(f)}(f;q_{f}^{-2})$

$$\operatorname{ch}(I_{Hg_{\mu}H}) = \prod_{f} q_{f}^{-2}$$

polynomials.

Induction and restriction

$$H \cap P|^{-2} \sum f(\overline{hxh'}).$$

$$:=\sum_{p\in P, \overline{p}=x}f(p).$$

• Conjugation-invariant: Invariant under conjugation of $L \subseteq P$ by

$$n(\mathbf{F}_q)/\operatorname{Sp}_{2n}(\mathbf{F}_q)] \to \bigotimes_r \Lambda$$

and extending linearly. Here, the $P_{\lambda}(t)$ denote the **Hall-Littlewood**

Theorem: The collection of all $\text{Sp}_{2n}(\mathbf{F}_q)$ -bi-invariant functions on $\operatorname{GL}_{2n}(\mathbf{F}_q)$ for $n \in \mathbf{N}$ is isomorphic to a tensor power of the ring of symmetric functions under the characteristic map ch. The map ch has the following properties:

- twist.

Schur expansion of Macdonald Polynomials

The skew Macdonald polynomial $P_{\lambda/\mu}(x;q,t)$ is defined by requiring $\langle P_{\lambda/\mu}(q,t),f\rangle = \langle P_{\lambda}(q,t),Q_{\mu}(q,t)f\rangle$ for all symmetric functions f.

Theorem: If q is an odd prime power, then the skew-Macdonald polynomials $P_{\lambda/\mu}(q,q^2)$ expand positively into Schur functions.

Our application is related to a conjecture of Haglund which states that

In fact, some computations done in Sage suggest the following extension. Let $J^{\perp}_{\mu}(q,q^2)$ denote the adjoint to multiplication by $J_{\mu}(q,q^2)$ under the (q, q^2) -inner product. Then it seems that (1 -

[1] J. He. A characteristic map for the symmetric space of symplectic forms over a finite field, 2019. arXiv:1906.05966.

• Isometry: Up to a scalar, ch takes the inner product of bi-invariant functions to the (q, q^2) Macdonald inner product. • **Product**: The bi-invariant functions form a module over the class functions for $GL_n(\mathbf{F}_q)$ under a bi-invariant version of parabolic induction, and ch preserves this structure up to a

• Spherical functions: Up to a scalar, ch takes the spherical functions to Macdonald polynomials of parameter (q, q^2) .

$$(1-q)^{-|\lambda|}\langle J_{\lambda}(x;q,q^k), s_{\mu}\rangle \in \mathbf{N}[q].$$

$$-q)^{-|\lambda|-|\mu|}\langle J^{\perp}_{\mu}(q,q^2)J_{\lambda}(q,q^2),s_{\nu}\rangle \in \mathbf{N}[q].$$

Acknowledgements

This research was supported in part by NSERC.

References